

Welcome to Intro to Docker Labs - F5 ISCFY17’s documentation!

This document is to help you learn more about Docker. Though this session we will help you:
* Access a docker environment (hosted in UDF)
* Manipulate docker containers

	Run a container (Create, Start, Stop, Delete, Status)

	Create a container

	Publish a container

	Overview of Docker networking

Contents:

Getting Started

	Introduction

	Topology

	Connecting to UDF
	Start your environment

	Access your environment

Labs

	Setting up

	Lab 1: Run a container
	The legacy Application

	Docker Pull

	Docker Run

	Docker ps / inspect

	Docker stop

	Lab 2: Building a container
	Setup

	Docker build

	Bonus Activity

	Lab 3: Publishing a container
	Docker registry

	Docker tag

	Lab 4: Docker Networking
	Ephemeral ports

	Linux Bridge Network

	Docker and networking

Appendix

	Appendix
	Changing display for HiRes displays

Indices and tables

	Index

	Module Index

	Search Page

Introduction

the following labs are a basic introduction to Docker containers and networking.

To do the labs, we will leverage UDF and the blueprint called ‘Introduction to Docker’.

[image: ../_images/blueprint-no-arrow.png]
if you would prefer to have a pdf version of this guide, you may click on v:latest at the bottom of the column menu and download a pdf version of this guide

[image: ../_images/get-pdf-guide.png]

Topology

The topology for this lab is more advanced than needed because it is leveraged also by another lab.

Here is the list of the blueprint components that we will use in this lab - everything else can be safely ignored:

	server01 node (ubuntu hosting docker)

	server02 node (ubuntu hosting docker)

	win2012 (jumpbox to the environment)

Connecting to UDF

We consider that you have access to UDF for the different labs

Start your environment

If you are running this on your own, find the ‘Introduction to Docker’ blueprint and deploy it.

[image: ../_images/Blueprint.png]

Access your environment

Once your environment is started, find the ‘win2012’ component under ‘Components’ and launch RDP (in the ACCESS menu)

[image: ../_images/Launch-RDP.png]
Click on the shortcut that got downloaded and it should open your RDP session. The credentials to use are under the Details tab.

Warning

For MAC user, it is recommended to use Microsoft Remote Desktop. You may not be able to access your jumpbox otherwise. It is available in the App store (FREE).

Setting up

There are GUI interfaces to manage a Docker container, but to start we are going to learn about using the command-line interface. Most users will prefer to use command-line tools.

Open a session on server01. Double click on this icon on your desktop

[image: ../_images/agent01-putty-icon.png]
You should see a large terminal window. If the Text is too small; please visit the Appendix section at the end of this document on changing the size of the text.

You should be automatically logged in. If not, use the following credentials:

	Login: ubuntu

	SSH Key: [Located on Desktop]

Lab 1: Run a container

All commands from this lab will also be provided as a text file. You may want to download this file first and copy-and-paste the following commands. the commands are in a file on your desktop called Intro to Docker.sh. You may edit it by doing a right click on edit and select Edit with Notepad++

[image: ../_images/Intro-docker-cmds.png]
The first lab is an example of migrating an application to run in a container.

Goals of the lab

	Learn how to launch an existing container

	Create your own container

	Distribute your container

The legacy Application

One of the use-cases for utilizing containers is to migrate an existing on-premises application to first run in a container and eventually migrate the container to run in a public cloud environment. The first lab will migrate the existing app that is running at: http://10.1.10.11/

Launch Chrome and visit http://10.1.10.11 (make sure to enter http://)

[image: ../_images/www-legacy-app.png]
10.1.10.11 is one of server01 IP addresses. You can check this by typing ifconfig eth1 in your putty session

[image: ../_images/ifconfig-eth1.png]
The first step of this lab is to download a container that has PHP.

Docker Pull

Normally you would run the command docker pull [image]:[tag] to pull down a public image of a container. This is similar to going to the F5 Downloads site to grab the latest vLab or ISO, but it doesn’t require any authentication. This is an example of a low-friction method of obtaining software that is appealing to Mode 2 users.

The Docker Hub (transition to Store) has a listing of community images that are available. Visit https://hub.docker.com/ and search for php.

[image: ../_images/docker-hub.png]
You’ll see a long list of available versions of PHP that can be downloaded.

In this lab, we have already downloaded the required containers. You can view the available containers by running the command:

docker images

[image: ../_images/lab1-docker-image-cmd.png]
For the lab we have retrieved php:5.6-apache and php:7-apache. These represent containers that can run PHP 5.6 / 7 running on the Apache web server (httpd).

Warning

For your information, if the user doesn’t have the proper privileges, you’ll see something like this:

Cannot connect to the Docker daemon. Is the docker daemon running on this host?

In case of this error, you can either run as root or use the sudo command, i.e. sudo docker images
In this lab, it should not be the case. We have added the user user to the docker unix group to enable it to be able to run these commands as a non-root user.

Docker Run

The community PHP container by default does not have any content. You can verify this by running:

docker run -p 8080:80 --name myphp php:5.6-apache

This command will start the PHP 5.6 container. Some of the options we specified:

	The ‘-p 8080:80’ indicates that we want to create a port forwarding rule to map the host port ‘8080’ to the container port 80 (more about container networking later in the lab).

	The ‘–name myphp’ is used to name the container. This is not required, but will make future steps in the lab easier.

Warning

You will see error messages like Could not reliably determine the server’s fully qualified domain name,.. this is expected.

You will see that you don’t get a prompt back. This is expected. We just launched the container in foreground.

[image: ../_images/lab1-start-container-front.png]
Visit http://10.1.10.11:8080 in Chrome and you will see the following error page (expected).

[image: ../_images/lab1-access-agent01-8080-forbidden.png]

Docker ps / inspect

Now that you have a container running you may want to learn some additional docker commands.

Open a new terminal window on agent01 (leave the existing window open).

[image: ../_images/agent01-putty-icon.png]
run the following command:

docker ps

You should see the following:

[image: ../_images/lab1-docker-ps.png]
Note there are two containers that are running. The PHP container that you launched and a registry container that will be used later in this lab.

Note the ‘Container ID’ and ‘Ports’ columns. The ‘Container ID’ represents a unique identifier that you can use to manage individual containers and the ‘Ports’ columns lists what the current port forwarding mappings are:

Highlight the 'Container ID' for the PHP container (this will place the value into your copy and paste buffer - if you double click on the ID, Putty will automatically highlight it).

[image: ../_images/lab1-docker-ps-highlight-ID.png]
Use this to run the command:

docker inspect [CONTAINER ID]

or you can simply run:

docker inspect myphp

This provides a large amount of detailed data about a container that can be useful if you need to troubleshoot any problems.

[image: ../_images/lab1-docker-inspect.png]
Now run:

docker logs myphp

This will output the logs from the container (this should match what you see in the other terminal open where we started this container).

Docker stop

There are two ways that you can stop the container that we started earlier. Either type CTRL+C to terminate the running container (from the window that you originally started it).

[image: ../_images/lab1-kill-container.png]
Note that the web server logs are output to the screen (vs. a log file).

You could also do:

docker stop myphp

[image: ../_images/lab1-docker-stop-container.png]
If you run this command, you willl see that we got our prompt back in the other terminal session since we stopped this process.

If you run:

docker ps

you will no longer see myphp running.

Run:

docker ps
docker ps -a
docker rm myphp
docker ps -a

Docker ps only shows running containers. Adding ‘-a’ will show stopped containers and ‘rm’ will remove a stopped container.

[image: ../_images/lab1-ps-no-container.png]
[image: ../_images/lab1-docker-ps-a-option.png]
[image: ../_images/lab1-docker-rm-container.png]
[image: ../_images/lab1-docker-ps-a-empty.png]

Lab 2: Building a container

Setup

Now that we’ve covered the basics of running a container it is time to take a look at building our own custom container. For this lab we will use WinSCP to transfer files from the Windows client to the Linux host running Docker.

Launch the ‘WINSCP’ shortcut that is on the Desktop. Be sure to use this link, it should connect and place you in the Folder ‘mycontainer’.

[image: ../_images/lab2-winscp-shortcut.png]

Note

If connection/authentication fails for some reason, here are the relevant information to launch your WinScp session:

	hostname : 10.1.10.11

	login: ubuntu

	ssh key: [On the Desktop]

once logged in:

	on server01: go to /home/ubuntu/f5-intro-to-docker/mycontainer directory

	locally: select your c:\Users\Administrator\Desktop\f5-intro-to-docker\mycontainer directory

[image: ../_images/lab2-winscp-connected.png]
On the left panel, first open Dockerfile by right-clicking on the filename and selecting Edit.

[image: ../_images/lab2-winscp-edit-local-dockerfile.png]
[image: ../_images/lab2-show-dockerfile.png]
You should see a very simple Dockerfile. This file is used build a container. The first line references which container we want to use as the starting container and the second line references the file that we want to copy into the new container.

On the left panel, open ‘index.php’ and change the value of Your Name and click on the ‘Save’ button.

[image: ../_images/lab2-edit-index.png]
[image: ../_images/lab2-edit-name-index.png]
[image: ../_images/lab2-edited-name-index.png]
Save your changes and close Notepad++

[image: ../_images/lab2-save-index.png]
Now upload your updated ‘index.php’. We don’t need to upload the Dockerfile file because we didn’t changed anything.

[image: ../_images/lab2-upload-index.png]
When prompted, click ‘Yes’ to overwrite the existing file.

[image: ../_images/lab2-upload-overwrite-index.png]

Docker build

Back to your terminal window (on server01), run the following commands and verify that you’re in the correct directory:

cd mycontainer
pwd

[image: ../_images/lab2-mycontainer-directory.png]
docker build -t mycontainer:5.6 .

Note

Note the ‘.’ at the end of the command.

[image: ../_images/lab2-docker-build-cmd.png]
This command specifies that you want to build a new container with the name mycontainer and the tag ‘5.6’.

Running docker images you should see your new container.

docker images

[image: ../_images/lab2-dockerbuild-docker-images-cmd-mycontainer.png]
Verifies that it works by running

docker run -d --name myapp -p 8080:80 mycontainer:5.6

Note

The option ‘-d’ makes the container run in the background. We get our prompt back.

We can check it is up and running by connecting to http://10.1.10.11:8080 in Chrome.

[image: ../_images/lab2-dockerbuild-access-container-http.png]

Note

Pay attention to the difference in Server IP (server01 is 10.1.10.11)

You are now running a supported version of PHP on the same host that was previously running an unsupported version. Similar to the virtue of running vCMP; containers make it easier to run multiple versions of software on the same platform.i

Bonus Activity

Rebuild mycontainer to run using the php:7-apache image. PHP 5.6 is also approaching end-of-life and PHP 7 is the most recent version! Do not delete the image mycontainer:5.6

Lab 3: Publishing a container

Docker registry

The container is now running on mesos-agent01, but what if we want to have it run on server02?
It is possible to manually export/import the image from one host to another, but it is more practical to use a Docker registry.

A Docker registry is an image repository of Docker containers. You can ‘push’ a container into the public Docker Hub or maintain your own private Docker registry/repository.
For the lab we have previously created a registry that lives at ‘registry:5000’ (running on mesos-agent01).

Note

We already setup docker to use this registry in the /etc/default/docker file (need to be root to access it)

Docker tag

Currently ‘mycontainer:5.6’ lives locally on server01. We need to apply a tag that will indicate where we want it to go, then me need to push/copy the image to that location.

Run

docker tag mycontainer:5.6 registry:5000/mycontainer:5.6
docker images

Note

Note that you have two tags with the same Image ID.

[image: ../_images/lab3-dockertag-docker-images-cmd.png]
Now run:

docker push registry:5000/mycontainer:5.6

Open a terminal window to server02. You have the following shortcut on your desktop, use it.

[image: ../_images/lab3-dockertag-putty-agent02.png]
Run

docker run --rm -p 8080:80 --name myapp mycontainer:5.6

[image: ../_images/lab3-dockertag-docker-run-fail.png]
Note that the command failed. The container does not exist on this host. Now run.

docker run --rm -p 8080:80 --name myapp registry:5000/mycontainer:5.6

Note

The option ‘–-rm’ specify that the container should be automatically removed with it exits

[image: ../_images/lab3-dockertag-docker-run-success.png]
The container was found on the private registry and was started. Verify by visiting http://10.1.10.12:8080 in Chrome.

[image: ../_images/lab3-dockertag-container-access-http.png]
We are done with this container so we can delete it. Since we specified the ‘rm’ option, you just need to terminate the process. You can do so by doing

Ctrl+C

Make sure that it got removed with this command

docker ps -a

You can now close the agent02 terminal window. It will not be used for the rest of the lab.

Lab 4: Docker Networking

Ephemeral ports

Up to this point we have been using a static port mapping of port 8080 on the host to port 80 on a container. This works OK for a limited use-case, but generally you should not expect a container’s port binding to be static.

Connect to server01 via putty (use shortcut on Desktop) and run:

docker run -d --name myapp2 -p :80 mycontainer:5.6

docker port myapp2

[image: ../_images/lab4-ephemeralport-docker-port-cmd.png]

Note

the port option allows you to see the port mappings that was done with the container.

Record the port value that is returned (your output will differ) and open a new Chrome window for http://10.1.10.11:[PORT VALUE]

[image: ../_images/lab4-ephemeralport-port-http-access.png]
Now run:

docker restart myapp2

docker port myapp2

Observe that the port value has changed!

[image: ../_images/lab4-ephemeralport-restart-myapp2.png]

Linux Bridge Network

From the previous labs you may have noticed that on both server01 and server02 the container is running in the 172.17.0.0/16 network. By default Docker will create a Linux Bridge network on the host called docker0.

Connect via putty to mesos-agent01 and run:

ifconfig docker0

[image: ../_images/lab4-linuxbridgenetwork-ifconfig-docker0.png]
From Chrome visit http://10.1.10.11:[PORT VALUE] (port value from last lab step) and record what the Server IP value is.

[image: ../_images/lab4-linuxbridgenetwork-myapp2-access-http.png]
If you remember, agent01 interface eth1 has the IP of 10.1.10.11

[image: ../_images/lab4-linuxbridgenetwork-ifconfig-eth1.png]
Let’s create a route on our windows client so that all traffic related to the container’s network is sent to our server01 interface:

Open a Windows terminal window (you have a shortcut on your desktop)

[image: ../_images/lab4-linuxbridgenetwork-cmd-shortcut.png]
In the windows terminal, run:

route add 172.17.0.0 mask 255.255.0.0 10.1.10.11

In Chrome open a tab to http://[container ip]

[image: ../_images/lab4-linuxbridgenetwork-myapp2-access-http-bridge-network.png]
What happened? On server01 IP forwarding is enabled. When we created a static route from the Windows desktop to the Linux host we are able to forward packets directly to the Linux bridge network and by-pass the IPtables rules that were used previously for port forwarding.

You can check ip forwarding is enabled by running this command on server01

cat /proc/sys/net/ipv4/ip_forward

[image: ../_images/lab4-linuxbridgenetwork-ip_forward.png]
Now run again:

docker restart myapp2

Reload both browser windows.

[image: ../_images/lab4-linuxbridgenetwork-myapp2-restart-http-fail.png]
[image: ../_images/lab4-linuxbridgenetwork-myapp2-restart-http-success.png]
Observe that you can no longer connect to using the previous port value, but can still connect via the linux bridge.

Docker and networking

As we have seen in previous lab, the networking setup of our containers are done automatically.

Docker provides a default network bridge and use it to attach containers to the network. This default network is 172.17.0.0/16 and leverage bridge0 interface. You can create your own bridge / network when needed.

If you want to review your bridge interface and the containers attached to it, you can do the following on mesos-agent01:

docker network ls

[image: ../_images/lab4-dockerandnetworking-docker-network-ls-cmd.png]
Here you can see the bridge network which is what is used by docker container by default. If you want to run a container in a specific network, you can use the –network option when using docker run

the none network adds a container to a container-specific network stack. That containers lacks network interface

The host network adds a container on the hosts network stack. You’ll find the network configuration inside the container is identical to the host.

let’s review what has been deployed over the bridge network. Copy the network ID for your bridge (in the previous screenshot, it is 1f443785159f)

docker network inspect *[NETWORK ID]*

Here you will see:

	the network configuration

	IPv4/v6 addresses that have been associated with each container

[image: ../_images/lab4-dockerandnetworking-docker-network-inspect-cmd.png]
[image: ../_images/lab4-dockerandnetworking-docker-network-inspect-cmd2.png]
More advanced examples of Docker networking include Docker Swarm that utilizes its own SDN to provide multi-host Docker networking. The Kubernetes project utilizes flanneld for mutli-host Docker networking that can leverage host-gw (basic L2/L3), UDP packet encapsulation, or VXLAN.

Appendix

Changing display for HiRes displays

For HiRes Displays (Optional)
If you find the text hard to read you may opt to change the resolution. You can either size your laptop display to something like 1920x1080

OR
Login via the UDF Portal Console and change the display setting.

[image: ../_images/Appendix-changingdisplay-udfportalconsole.png]
Click on Make text and other items larger or smaller

[image: ../_images/Appendix-changingdisplay-increasefontsize.png]
Logout the Windows client and reconnect via RDP.

[image: ../_images/Appendix-changingdisplay-logout.png]

Index

 _images/lab4-linuxbridgenetwork-ifconfig-docker0.png
user@mesos-agentOli~/mycontainer§ ifconfig dockerl
docker0 Link encap:Bthernet Huaddr 02:42:c1:d9:35:0b
inet addr:172.17.0.1 Beast:0.0.0.0 Mask:255.255.0.0
inet6 addr: £280::42:cLff:fed9:350b/64 Scope:Link
UP BROADCAST RUNNING NULTICAST NTU:1500 Metric:l
RX packets:378704 errors:0 droppad:0 overruns:0 frame:0
TX packets: 467626 errors:0 dropped:0 overruns:0 carrier:0
collisions: txqueuelen:d
RX bytes:1085333701 (1.0 GB) TX bytes:2231056351 (2.2 GB)

_images/lab4-linuxbridgenetwork-ifconfig-eth1.png
sermesos-agent0l: ~/mycontainers ifconfig ethl
th1 Link encapiBthernet Huaddr 52:54:00:01:9e:de
inet addr:10.1.20.101 Beast:10.1.20.255 Mask:255.255.255.0
inets addr: fesD::5054:ff:fe0l:ade/6d Scope:link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:l
RX packets:5099976 errors:0 dropped:2 overruns:0 frame:0
X packets: 4173221 errorsi dropped:0 overruns:0 carrier:d
collisions:0 txqueuslen: 1000
RX bytes: 1911678391 (1.9 GB) TX bytes:2094211863 (2.0 GB)

_images/lab4-ephemeralport-restart-myapp2.png
userfmesos-agentll:~/mycontainers docker restart myapp2
nyapp2

user@mesos-agent0l:~/mycontainer$ docker port myapp2
80/tcp -> 0.0.0.0:32772

_images/lab4-linuxbridgenetwork-cmd-shortcut.png
oMD

_images/get-pdf-guide.png
& Read the Docs v: latest v

latest
PDF HTML Epub
Project Home Builds Downloads

View Edit

_images/lab4-linuxbridgenetwork-myapp2-access-http.png
<« C | ® mesos-agent01:32772
Apps (® BIG-P (@) Marathon [[) Mesos [FSDemo Site % Modem Web £

Created By: Nicolas Menant

Stats

PHP VERSION HOSTNAME SERVER %RT CLIENT IP

56.26 bb48a55fe729 172.17.0.4:32772 10.1.204

_images/ifconfig-eth1.png
userfmescos-agent0l:~5 ifconfig ethl

ethl

Link encap:Ethernet HWaddr 52:54
inet addr:10.1.20.101 Beast:10.1
inetf addr: fe80::5054:ff:fell: Fec
UP BROADCAST RUNNING MULTICAST M
R¥ packets:5083768 errors:0 dropps
T¥ packets:4161069 errors: 0 dropps
colligions: 0 txqueuelen: 1000

RX bytes:1900673296 (1.9 GB) TX I

_images/lab4-linuxbridgenetwork-myapp2-restart-http-fail.png
[mesos-agentil x (D) PHePage *\L\

¢ C [0 mesos-agentorazr
sgp (B0 @ Morthon [Meros [} F5DermaSte) Moder Web Agp £ Madem Web App D Sl

B

This site can’t be reached

_images/blueprint-no-arrow.png
F5 CSI Marathon/Mesos

Q $2.42

Solution Per hour

« DEPLOY DETAILS

_images/lab4-linuxbridgenetwork-ip_forward.png
ser@mesos-agent0l: ~/mycontainer$ cat /proc/sys/net/ipv4/ip_forward
1

_images/docker-hub.png
& hitps,/hub dos

Marathen M Mesos B Modem Web Ape B Modern Web A

php ¥ .

Repolnfo Tags

Short Description

While designed for web development, the PHP scripting language also provides general-purpose use.

Full Description

Supported tags and respective
Dockerfile links

* 7.1.0RC3-cli, 7.1-cli, 7.1.@RC3, 7.1 (7.1/Dockerfile)
+ 7.1.08C3-alpine , 7.1-alpine (7.1/alpine/Dockerfle)
* 7.1.@RC3-apache , 7.1-apache (7. 1/apache/Dockerfile)

_images/lab4-linuxbridgenetwork-myapp2-access-http-bridge-network.png
[} PHP Page %/ [3 PHP Page x

& C | ® 1721704
Apps (® BIG-IP (@) Marathon [[[] Mesos [F5Demo Site % Modern Wet

Created By: Nicolas Menant

Stats

PHP VERSION HOSTNAME SERVER IP:PORT CLIENT IP

56.26 bb48a55fe729 172.17.0.4:80 10.1.204

_images/lab1-docker-inspect.png
juser@mesos-agent01l: ~§ docker inspect 3b2f90flefbf
[

{
"Id": "3b2f90flebbflal2096fbaScfalsc27ffbe652datfi3l
"Created”: "2016-10-19T08:23:43.0235408792",
"Path "apacheZ-foreground”,
"Args 1.
"State": |
"Status": "running",
"Running": true,
"Paused": false,
"Restarting": false,
"OOMEilled": false,
"Dead": false,
"Pid": 2623,
"ExitCode": O,
"Error": "",
"StartedAt”: "2016-10-19T08:23:58.5577206372",
"Finishedat"”: "0001-01-01T00:00:00Z"

_images/lab1-docker-ps-a-empty.png
ser@mesos-agent01l:~5 docker ps -a

ONTAINER ID IMAGE COMMAND

da984d1525d registry:2 "/entrypoint.sh /ete/"
ser@mesos-agent01:~§ |

_images/lab1-access-agent01-8080-forbidden.png
D) PHP Page x cebidden

C' ® mesos-agent01:8080
€5 BIG- 1P O Marathon M Mesos [FSDemosSite 8 Modem Web App.

Forbidden

You don't have permission to access / on this server.

Apache/2.4.10 (Debian) Server at mesos-agent01 Port 5080

_images/lab4-linuxbridgenetwork-myapp2-restart-http-success.png
[} mesas-agentdl %)/ [PHP Page x

< C | ® 1721704
Apps (BIG-P (@ Marathon [[) Mesos [F5Demo Site £ Modern Wel

Created By: Nicolas Menant

Stats

PHP VERSION HOSTNAME SERVER IP:PORT CLIENT IP

5626 bb48a55£729 172.17.0.4:80 10.1.204

_images/lab1-docker-image-cmd.png
iSerUmesos-agentUl: ~5 docKer
EPOSITORY

15000/ £5demo
15000/ lwp-controller

busybox

images
TAG
7-apache

5. 6-apache

latest
latest
<none>

v0.1.1

IMAGE ID
f4le3Bchle7c
8f9bp7e5712%a

_images/www-legacy-app.png
[PHP Page

€ C O mesos-agentol
5 66P O Masthon M Mesos

[F50emoSte B ModemWeb App B Modem Web App 51

Created By: Your Name

Stats

PHP VERSION HOSTNAME SERVER IP:PORT CLIENT IP

559-lubuomd 20 mesos-agent0l Sdemo.com 10.120.10180 10.1.204

_images/lab1-docker-ps-a-option.png
ser@me agent0l
CONTAINER ID
b2f90fle bt
bda984d1525d

:~5 docker ps -a
IMAGE
php: 5. 6-apache
registry:2

COMMAND
"apache2-foreground"”
"/entrypoint.sh /etc/"

_images/lab1-docker-ps-highlight-ID.png
userfmesos-agentll: ~5 docker ps
CONTAINER ID IMAGE

3 90fleBbf] prhp:5. 6-apache
bda®84d1525d registry:2

_images/Intro-docker-cmds.png
Open

I

Open with...

Share with 3

Restore previous versions
Send to 3
Cut

Copy

Create shortcut

Delete
Rename

Properties

_images/Launch-RDP.png
Systems

win2012
Windows Server 2012 R2

»

DETAILS
—

server01

_images/Appendix-changingdisplay-udfportalconsole.png

_images/Blueprint.png
Info

Deployments E B | Uepri ntS

Blueprints Q docker

Maintainer

Intro to Docker Labs
Eric Chen
Regional Architect - Cloud

 DEPLOY DETAILS

_images/agent01-putty-icon.png

_static/comment-close.png

_images/lab1-docker-ps.png
userGmesos-agent01: ~§ docker ps
“ONTAINER ID IMAGE COMMAND CREATED

b2£90Ffle6bE php: 5. 6-apache "apache2-foreground” 2 minutes ago
da984d1525d registry:2 "/entrypoint.sh /etc/" 5 days ago

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Intro to Docker Labs - F5 ISCFY17’s documentation!

 		
 Introduction

 		
 Topology

 		
 Connecting to UDF

 		
 Start your environment

 		
 Access your environment

 		
 Setting up

 		
 Lab 1: Run a container

 		
 The legacy Application

 		
 Docker Pull

 		
 Docker Run

 		
 Docker ps / inspect

 		
 Docker stop

 		
 Lab 2: Building a container

 		
 Setup

 		
 Docker build

 		
 Bonus Activity

 		
 Lab 3: Publishing a container

 		
 Docker registry

 		
 Docker tag

 		
 Lab 4: Docker Networking

 		
 Ephemeral ports

 		
 Linux Bridge Network

 		
 Docker and networking

 		
 Appendix

 		
 Changing display for HiRes displays

_static/comment-bright.png

_images/Appendix-changingdisplay-increasefontsize.png
[o—

Make it esier o read what's on your screen

prm—— You can changeth s f st cths s oy s
— et e 18 ol e e i e L

Chnge ity et
A GeTperen © Smuter- 100)

S castom et e 0F)
© Mediom - 125% /

o Larger - 150% ——

_images/lab1-kill-container.png
userfmesos-agent0l:~/mycontainer$ docker run -p 8080:80 --name myphp php:S.6-apache
docker: Cannot connect to the Docker daemon. Is the docker daemon running on this host?.

See 'docker run --help'.

user@mesos-agent01:~/nycontainers sudo docker run -p 8080:80 --name myphp php:S.6-apache

AHODSSS: apache2: Could not relishly determine the server's fully qualified domain neme, using 172.17.0.3
cbally to suppress this message

AHODSSS: apache2: Could not relishly determine the server's fully qualified domain name, using 172.17.0.3
cbally to suppress this message

[Tue Oct 18 16:03:00.004606 2016] [wpm_prefork:notice] [pid 1] AHOD163: Apache/2.4.10 (Debian) PHP/S.6.25
ations

[Tue Oct 18 16:03:00.006170 2016] [core:notice] [pid 1] AHODOS4: Command line: 'apachez -D FOREGROUND'

“X*C[Tue Oct 18 16:13:06.220107 2016] [mpm_prefork:notice] [pid 1] AHOO169: caught SIGTERN, shutting down
userf@mesos—agent0l: ~/mycontainers I

_images/Appendix-changingdisplay-logout.png
T — | v\nm[

Toeoeh programs snd fies Log ot T
frStat @& M Desktop | jg Downl.. | @ BIGIP.. |[) A

_images/lab1-ps-no-container.png
ser@mesos-agent0l:~$ docker ps

ONTAINER ID IMAGE COMMAND

da984d1525d registry:2 "/entrypoint.sh /etc/"
= -5

_images/lab1-docker-rm-container.png
user@mesos-agent(

myphp
userdn

_static/down-pressed.png

_images/lab1-docker-stop-container.png
user@mescos-agent0l:~5 docker stop myphp

myphp
usermesos—agent0l: ~5 I

_static/down.png

_images/lab2-dockerbuild-access-container-http.png
Created By: Nicolas Menant

Stats

PHP VERSION HOSTNAME SERVER IP:PORT CLIENT IP

5626 15221af326c5 172.17.0.3:8080 10.1.20.4

e

_images/lab2-dockerbuild-docker-images-cmd-mycontainer.png
user@mesos-agentll: ~/mycontainers docker images

REPOSITORY TAG
iyoontainar « e
php 7-apache

php 5.6-apache
registry 2

registry latest
centos latest
registry:5000/f5deno <none>
registry:5000/lwp-controller v0.1.1
php <none>
busybox latest

user@mesos-agent0l: ~/mycontainer$ [I

_images/lab1-start-container-front.png
user@mesos-agent0l:~5 docker run -p 8080:80 --name myphp php:5.6-apache

AHOO5E8: apacheZ: Could not reliably determine the server's fully qualified domain name, using 172.17.0.4.
ally to suppress this message

AHOO5E8: apacheZ: Could not reliably determine the server's fully qualified domain name, using 172.17.0.4.
ally to suppress this message

[Thu Oct 27 22:33:57.872799 2016] [mpm_prefork:netice] [pid 1] AHO0163: Apache/Z.4.10 (Debian) PHE/S5.6.26
ions

LThu Oot 27 22:33:57.876010 2016] [core:notice] [pid 1] AHOODO0%4: cCommand line: TapacheZ -D FOREGROUNDT

_static/file.png

_images/lab2-docker-build-cmd.png
userfuesos-agentll: ~/mycontainers docker build -t mycontainer:S.6
onding build context to Docker dasmon 3.584 kB
step 1: EROM php:S. 6-apache

> sesn7as7izoa
step 2 : COY index.php /var/uwsa/htwl/indsx. php

714408903915

Renoving intetmediate container d56516aicfas
buccessfully buile 714308903915
isermasos-agent01: /mycontainers Il

_images/lab2-edit-index.png
Neme ~ 1 sntpe (Qunged Neme = 1

G Pt Grecry 101572016 356258 -
Dot 598 e 1071572016 35404 1| - Doseeie
2 s e 10572016 3564081 | e

Uplosd
Uplosd i Deete

zazz

_static/ajax-loader.gif

_images/lab2-edit-name-index.png
<htrl>

<heaa>
<title>PHP Page</title>
<style>table { margin 10px; border:
</head>
<body>
<stronyP-ated By:

Your Name

_static/up.png

_images/lab2-edited-name-index.png
[stden £3| B Inro o Docker.sh £ B index.php B

1 <html>

<head>

<title>PHP Page</title>
<style>table { margin 10px: horder
</head>

<body>

Created By:

VO a e e N

Hicolas Menant

S

5
=)

_static/up-pressed.png

_images/lab2-show-dockerfile.png
[Dockefile E3

1 FROM php:5.6-apache
2 COPY index.php /var/www/html/index.php

_images/lab2-upload-index.png
size| Ty Changed

Paentdrectory 10/15/2016 35625 AT
595 Fio 10/15/2016 35404 A
28 pHe Fle 10/16/2016 23916 A

Upload and Dalete.
Daete
Rensme.

Custom Commands
Fle Names

Properties
System Menu

_images/lab2-mycontainer-directory.png
userfnesos-agent01:~§ cd mycontainer/

user@resos-agent0l:~/mycontainer$ pwd
/ home/ user /mycontainer
userfmesos-agent0l:~/mycontainer$

_images/lab2-save-index.png
- *Ci\Users\user\mycontainer\index.php - Notepad-+ [Administrato
e e b O T

New N
Open. a0
Open Containing Folder »

Open Folder as Workspace.
Reload from Disk

SMASK TS

_images/lab2-winscp-edit-local-dockerfile.png
[T S Tpe (Cunged Name ~ 50

o P ey 10752016 35625 A1 [&

ul 10732016 1200535 | Dodetle
e 10752016 356408 | indenhe

@ Upous. 3
Uposdsnd . 76
X oute B
4 funame)

Gusom Commands+
Floames b
. B
System s

_images/lab2-winscp-shortcut.png
WINSCP

_images/lab2-upload-overwrite-index.png

_images/lab2-winscp-connected.png

_static/minus.png

_static/plus.png

_images/lab3-dockertag-docker-images-cmd.png
user@mesos-agentUl: ~/mycontainer$ docker images
REPOSTTORY TAG IMAGE ID

nycontainer 5.6 SeaSald1fcsh
registry:5000/mycontainer 5.6 Sea5aldlfc5b

_images/lab3-dockertag-docker-run-fail.png
user@nesos-agent02:~5 docker run --rm -p 8080:80 --name myapp mycontainer:S5.6
Unable to find image 'mycontainer:5.6' locally

Pulling repository docker.io/library/mycontainer

docker: Error: image library/mycontainer:S.6 not found.

See 'docker run --help’

_images/lab3-dockertag-container-access-http.png
€ C [®nusssgmioz

5565 0 aon M s
Created By: B Cien

b dop B Wodem Wb op

Stats
[FHP VERSION HOSTNAME _SERVER IPPORT CLIENTIP
626 ESTcedss2she 121028080 101204

_images/lab4-dockerandnetworking-docker-network-inspect-cmd.png
useriimesos-agentil:~/mycontainery docker network ilnspect 1Egfsrisisst
0
‘
“Name": “"bridge”,
"Id": "1£443705159708dabIBES020860bd2F18094170161014650638517483dbEaL”,
"scoper: “local”,
“Driver™: "bridge’,
"EnableTeve": falss,
reant: (
“Drivert: “defaulc
“options": null,
“conig™: |
«

"subnet”: "172.17.0.0/16%,
"Gateway®: "172.17.0.1%

_images/lab4-dockerandnetworking-docker-network-inspect-cmd2.png
"Containers”: {
"15221af326¢5911611chB231619b1b62aSE5bEE7

"Name": "myapp",

"EndpointID": "a3cZlefed486fbe2681235
"MacAddress": "02:42:ac:11:00:03",
"IPv4Address"”: "172.17.0.3/16",

"IPv6Address": ""
Yo

_images/lab3-dockertag-docker-run-success.png
user@mesos-agent02: -5 docker run --em -p B0B0:80 --name myapp registry:S000/mycontainer:S.6

_images/lab3-dockertag-putty-agent02.png
o

agent02

_images/lab4-ephemeralport-port-http-access.png
[PHP Page x

<« C | ® mesos-agent01:3277
fpps (@ BIGIP (@ Marathon [[J Mesos [3) F5Demo Site % Modern Web.

Created By: Nicolas Menant

Stats

PHP VERSION HOSTNAME SERVER IP:PORT CLIENT IP

5626 bb48a55fe729 172.17.0.432771 10.1.204

_images/lab4-dockerandnetworking-docker-network-ls-cmd.png
user@mesos-agent0l: ~/mycontainer$ docker network ls

ETWORK ID NAME DRIVER sCOPE
1£443785159¢ bridge bridge local
c1c3368c7¢de host host local

79286d1eadTe none null local

_images/lab4-ephemeralport-docker-port-cmd.png
user@mesos-agent0l: ~/mycontainer$ docker port myapp2
80/tep -> 0.0.0.0:32771

